

प्रौद्योगिकी के साथ काम करने के लिए समझने हेतु एवं छात्रों की सहायता करने के लिए प्रारंभ करने वालों के लिए मैं सर्वव्यापी बनाऊंगा गाइड तैयार किया गया है।

इसमें एक प्रौद्योगिकी मंच के बारे में एक चरणबद्ध परिचय शामिल है - जेनुइनो 101।

एक मंच के साथ कैसे काम किया जाए हम आपसे यह समझने, सीखने और फिर बाहर जाकर आगे की खोज करने का आग्रह करते हैं।

व्यावहारिक व क्रियाशील

एक्सेलेरोमीटर

विचार

विचार यह है कि जेनुइनो 101 बोर्ड के इनर्शिअल मेज़रमेंट यूनिट में रखे एक्सेलेरोमीटर के तीन अक्षों को पढ़ना।

प्रत्येक अक्ष एक विशिष्ट फ़ंक्शन द्वारा परिभाषित सीमा के भीतर त्वरण को मापता है और एक कच्चे मान को देता है जिसे मिलीग्राम में एक मान प्राप्त करने के लिए परिवर्तित करने की आवश्यकता होती है। रूपांतरण का परिणाम त्वरक मूल्यों (x, y और z) के तीनों के रूप में सीरियल मोटर्स पर मुद्रित होता है।

Hannah and

.........

सॉफ्टवेयर

00	Verity / Compile Ctr	5+R		Ø
BLECC	Show Sketch Folder Ctr Add File	6×K		
	Import Library		Add Librery	1
Cepyvight	(c) 2012, 2013 BedRearLab		EEPROM	
Paroi sai on	is larshy granted, free s	64	Esplora Ethernet	detaining a copy of thi
The above o	spyright notice and this	pere :	Firmata	ve included in all orpi
THE SOFTWAR	8 IS PROVIDED THE LST. NO	100	LiquidCrystal	ID, REFERENCE ON INFLIGHT,
e/			Robet_Control Robet_Motor	

पुस्तकालय

CurielMU.h वह लाइब्रेरी या पुस्तकालय है जो जेनुइनो बोर्ड के IMU चिप के सभी मापदंडों, विशेषताओं और रीडिंग तक पहुंच प्रदान करता है।

इस यूनिट में तीन अक्षों का एक्सेलेरोमीटर और तीन अक्षों वाला गायरोस्कोप है। यह लाइब्रेरी जेनुइनो बोर्ड कोर का हिस्सा है और इसे आर्डुइनो या जेनुइनो 101 के लिए कोर फ़ाइलों के साथ लोड किया गया है। इस ट्यूटोरियल में रॉ एक्सेलेरोमीटर मानों को पढ़ा है।

	63.0	
	>	Board & Port -
		void setup (){ }
	·	void loop (){ }
ਹ		

फ्लोट परिवर्तित कच्चे त्वरण (int aRaw) - एक्सेलेरोमीटर (aRaw) से पढ़े जाने वाले रॉ डेटा को मिलीग्राम (हजारों g) में व्यक्त मान में बदल देता है। फ़ंक्शन का सूत्र सेट एक्सेलेरोमीटर रेंज के साथ सेट किए गए एक्सीलरोमीटर रेंज से मेल खाने के लिए समायोजित किया जाना चाहिए।

कोड

(refer to English- Copyright.....reserved.)

यह लाइब्रेरी स्वतंत्र सॉफ्टवेयर है, आप इसे GNU लेसर जनरल पब्लिक लाइसेंस की शर्तों के तहत पुनः विभाजित या रूपांतरित कर सकते हैं जैसा कि फ्री सॉफ्टवेयर फाउंडेशन द्वारा प्रकाशित किया गया है; या तो लाइसेंस के संस्करण 2.1, या किसी भी बाद के संस्करण में (आपके विकल्प पर)।

यह पुस्तकालय इस उम्मीद में वितरित किया जाता है कि यह उपयोगी होगा, लेकिन बिना किसी वारंटी के; किसी विशेष उद्देश्य के लिए फिटनेस की मर्चेंटबिलिटी की निहित वारंटी के बिना भी। अधिक विवरण के लिए GNU लेसर जनरल पब्लिक लाइसेंस देखें।

आपको इस पुस्तकालय के साथ GNU लेसर जनरल पब्लिक लाइसेंस की एक प्रति प्राप्त होनी चाहिए; यदि नहीं, तो फ्री सॉफ्टवेयर फाउंडेशन इंक को लिखें; 51 फ्रैंकलिन स्ट्रीट, पांचवीं मंजिल, बोस्टन, एमए 02110-1301 USA

*/

* / यह स्केच उदाहरण दर्शाता है कि इंटेल (R) क्यूरी (TM) मॉड्यूल पर BMI160 कैसे त्वरणमापी डेटा पढ़ने के लिए इस्तेमाल किया जा सकता है * /

कोड अगले पृष्ठ पर जारी है

h

#include "CurieMU.h"

void setup() { Serial.begin(9600); // सीरियल कम्युनिकेशन आरंभ करें // सीरियल पोर्ट के खुलने का इंतज़ार करें

// डिवाइस को चालू करें Serial.println('Initializing IMU device...") CurieMU.begin();

// एक्सेलेरोमीटर रेंज को 2G पर सेट करें

CurieIMU.setAccelerometerRange(2);

void loop() {

// रॉ एक्सेलेरोमीटर मान

int axRaw, ayRaw, azRaw; float ax, ay, az;

// डिवाइस से रॉ एक्सेलेरोमीटर माप को पढ़ें

CurieIMU.readAccelerometer(axRaw, ayRaw,azRaw);

// रॉ एक्सेलेरोमीटर डेटा को G's ax= में परिवर्तित करें

convertRawAcceleration(axRaw); ay = convertRawAcceleration(ayRaw); az = convertRawAcceleration(azRaw);

// टैब सेपरेटेड एक्सेलेरोमीटर x/ y/ z मानों को डिस्प्ले करें

Serial.print(ax);	Serial.print("\t");
Serial.print(ay);	Serial.print("\t");
Serial.print(az);	Serial.print("\t");

कोड अगले पृष्ठ पर जारी है

float convertRawAcceleration(int aRaw) { // क्यूंकि हम 2G रेंज का इस्तेमाल कर रहे हैं // - 2g मैप्स टू अ रॉ वैल्यू ऑफ़ -32768 // + 2g मैप्स टू अ रॉ वैल्यू ऑफ़ 32767

float a = (aRaw * 2.0) / 32768.0;return a;

विचार

यह विचार है कि गायरोस्कोप कच्चे मानों को पढ़ें और उन्हें तीन अक्षों में से प्रत्येक के चारों ओर कोणीय वेग में परिवर्तित करें। यह जानकारी तीन अक्षों के चारों ओर घूर्णी गति को मापने के लिए उपयोगी है, कुछ ऐसा जो त्वरण निरंतर होने पर माप नहीं सकता।

.......

सॉफ्टवेयर

20	Verify / Compile	Chris-R		0
BLECC	Show Sketch Folder Add File	Cbd+K		
	Import Library		Add Library	
urright.	(c) 2012, 2013 Hedfear)	Lab	EEPROM	
ienitiation	in bardy granted, D	n il d	Espiora Ethernet	ditatining a ropy of thi
a abova	ogyright notice and t	his you	Firmata GSM	ie included in all copi
TOPTYN	RK IN PROFERED "AS 13".	ALLANC	LiquidCrystal	IR, RIPECT OF DWILLER,
			Robet_Control Robet_Motor	

पुस्तकालय

CurielMU.h वह लाइब्रेरी या पुस्तकालय है जो जेनुइनो बोर्ड के IMU चिप के सभी मापदंडों, विशेषताओं और रीडिंग तक पहुंच प्रदान करता है।

इस यूनिट में तीन अक्षों का एक्सेलेरोमीटर और तीन अक्षों वाला गायरोस्कोप है। यह लाइब्रेरी जेनुइनो बोर्ड कोर का हिस्सा है और इसे आर्डुइनो या जेनुइनो 101 के लिए कोर फ़ाइलों के साथ लोड किया गया है। इस ट्यूटोरियल में रॉ एक्सेलेरोमीटर मानों को पढ़ा है।

>	Board & Port
	void setup (){ } void loop (){ }
f	

फ्लोट परिवर्तित कच्चे त्वरण (int aRaw) - एक्सेलेरोमीटर (aRaw) से पढ़े जाने वाले रॉ डेटा को मिलीग्राम (हजारों g) में व्यक्त मान में बदल देता है। फ़्रंक्शन का सूत्र सेट एक्सेलेरोमीटर रेंज के साथ सेट किए गए एक्सीलरोमीटर रेंज से मेल खाने के लिए समायोजित किया जाना चाहिए।

कोड

(refer to English- Copyright.....reserved.) यह लाइब्रेरी स्वतंत्र सॉफ्टवेयर है, आप इसे GNU लेसर जनरल पब्लिक लाइसेंस की शर्तों के तहत पुनः विभाजित या रूपांतरित कर सकते हैं जैसा कि फ्री सॉफ्टवेयर फाउंडेशन द्वारा प्रकाशित किया गया है; या तो लाइसेंस के संस्करण 2.1, या किसी भी बाद के संस्करण में (आपके विकल्प पर)।

यह पुस्तकालय इस उम्मीद में वितरित किया जाता है कि यह उपयोगी होगा, लेकिन बिना किसी वारंटी के; किसी विशेष उद्देश्य के लिए फिटनेस की मर्चेंटबिलिटी की निहित वारंटी के बिना भी। अधिक विवरण के लिए GNU लेसर जनरल पब्लिक लाइसेंस देखें।

आपको इस पुस्तकालय के साथ GNU लेसर जनरल पब्लिक लाइसेंस की एक प्रति प्राप्त होनी चाहिए; यदि नहीं, तो फ्री सॉफ्टवेयर फाउंडेशन इंक को लिखें; 51 फ्रैंकलिन स्ट्रीट, पांचवीं मंजिल, बोस्टन, एमए 02110-1301 USA

*/

* / यह स्केच उदाहरण दर्शाता है कि इंटेल (R) क्यूरी (TM) मॉड्यूल पर BMI160 कैसे त्वरणमापी डेटा पढ़ने के लिए इस्तेमाल किया जा सकता है * /

कोड अगले पृष्ठ पर जारी है

#include "CurielMU.h

void setup() { Serial.begin(9600); // सीरियल कम्युनिकेशन आरंभ करें while (ISErial); // सीरियल पोर्ट के खुलने का इंतज़ार करें

// डिवाइस को चालू करें Serial.println("Initializing IMU device..."); CurielMU.begin();

// एक्सेलेरोमीटर रेंज को 250 डिग्री प्रति सेकंड पर सेट करें CurielMU.setGyroRange(250);

voice Loop() { int gxRaw, gyRaw GzRaw; // float gx, gy, gz;

// रॉ गायरो मान

//डिवाइस से रॉ गायरो माप को पढ़ें

CurielMU.readgxRaw, gyRaw gzRaw);

// रॉ गायरो डेटा को डिग्री प्रति सेकंड में परिवर्तित करें gx

- = convertRawGyro(gxRaw);
- gy = convertRawGyro(gyRaw); gz
- = convertRawGyro(gzraw);

// टैब सेपरेटेड गायरो x/ y/ z मानों को डिस्प्ले करें

Serial.print("g:\t"); Serial.print(:gx); Serial.print("\t"); Serial.print(gx); Serial.print("\t"); Serial.print(gz); Serial.print();

कोड अगले पृष्ठ पर जारी है

float convertRawGyro(int gRaw) { // क्यूंकि हम 250 डिग्री प्रति सेकंड रेंज का इस्तेमाल कर रहे हैं // - 2g मैप्स टू अ रॉ वैल्यू ऑफ़ -32768 // + 2g मैप्स टू अ रॉ वैल्यू ऑफ़ 32767

float g = (gRaw * 250.0) / 32768.0; return g;

अभ्यास

ब्लू टूथ वर्क्स

माइक्रो कंट्रोलर के बारे में सबसे अच्छी चीजों में से एक है बाहरी चीजों से संपर्क स्थापित करने की उनकी क्षमता, एक अर्थ में उन्हें इंटरनेट ऑफ़ थिंग्स डिवाइस बनाना। जेनुइनो 101 बोर्ड में एक इनबिल्ट ब्लूटूथ मॉड्यूल है, आइए जानते हैं कि आप इसे कैसे जोड़ सकते हैं और आप क्या कर सकते हैं!

स्केच	हार्डवेयर
। आर्डुइनो IDE के भीतर कई प्रीलोडेड प्रोग्राम उदाहरण या रेखाचित्र हैं, यह सिर्फ एक है जिस पर आप विस्तार कर सकते हैं।	आपको ज़रूरत पड़ेगी: 1. 1X एलईडी
Click on file >>Examples>>Curielmu	2. 1X रेसिस्टर 3. 1Y गोटेंशियोमीटर
>>CurieBLEHeartRateMonitor.	4. 1X जेनुइनो बोर्ड

वायरिंग करना

क्यूंकि हम एक फिजिकल कंप्यूटर के साथ काम कर रहे हैं, हमें कभी-कभी भौतिक तत्वों को जोड़ने कि आवश्यकता होती है। जिस प्रकार चित्र में दिया गया है अपने जेनुइनों 101 बोर्ड की वायरिंग करें (चित्र के बड़े रूप में देखने के लिए इस साइट पर जाएँ)-

bit.ly/GenuinoBluetooth).

स्केच को अपलोड करना अपलोड बटन पर क्लिक करके इस स्केच को बोर्ड पर अपलोड करें। यह पता करने के लिए कि स्केच अपलोड हो गया है आपको हरी लाइन के पूरे भरने का इंतज़ार करना होगा।

एप्पल ये गूगल प्ले स्टोर पर जाकर BLE एप्प के वि	लेए nRF टूर	ल बॉक्स डाज	उनलोड करें	और फिर:	LE Ap	p then:	्याप	गह भी आजगा सकते हैं:
1. एप्प खोलें	iPad ≆	18:17	t 10015 -	Pad +	18:17	1 10015 mm		पर्णा आज़ना रापरा ह.
2. 'हार्ट' आइकॉन को चुनें			đđ.		E_HRMON		1. হ ি	से मोबाइल या चलता- रुरता बनाने के लिए एक
 'कनेक्ट' पर क्लिक करें 	ВОМ	BPM		NOTINO 300	1/a 6 potention by	55 m	बै	टरी पैक जोड़ें
 'हार्ट रेट स्केच' को चुनें 		HIM	нтм	RT RATE M(0 20 40 60	80 100	2. अ सं ब	न्य उपयोगों के बारे में ोचें एवं उन वेरिएबल्स के ारे में जिन्हें आप माप
	PROXIMITY	RSC Wreest by herds	LIANT	HEA	Time(Seconds DISCONNECT Writess by Nords		स 3. अ	कत ह ान्य एनालॉग सेंसर को गोडने कि कोशिश करें
	~	2		ر ک	0		0	

और देखें कि क्या होता है

यह पहचानते हुए कि अब आपके पास ब्लूटूथ कनेक्शन है, लाल एलईडी को अब ऑन हो जाना चाहिए। अब पोटेंशियोमीटर को मरोड़ें और देखें क्या होता है! जादू! अब संभावनाओं के बारे में सोचें! एक मूड सेंसर, बोरडम रैंकर, 'द वर्म' इन अ क्लासरूम एंड सो मच मोर!

संक्षिप्त विवरण

फिटनेस ट्रैकिंग तकनीक, वियरेबल्स एवं स्मार्ट वॉच सभी तेज़ी से फैल रहे हैं, लेकिन वे कैसे काम करते हैं? यह मार्गदर्शिका आपको दिखाएगी कि जेनुइनो 101 बोर्ड का उपयोग करके आप स्वयं इसका निर्माण कैसे कर सकते हैं, और फिर संभावनाएं अनंत हैं!

स्केच

आईइनो IDE के भीतर कई प्रीलोडेड प्रोग्राम उदाहरण या रेखाचित्र हैं, यह सिर्फ एक है जिस पर आप विस्तार कर सकते हैं।

Click on file >>Examples>> >>StepCount

सुझाव और तरकीबें

सुनिश्चित करें कि आपने चुना है टूल्स>> बोर्ड>> जेनुइनो 101 एवं एक COM पोर्ट चुना गया है टूल्स>> पोर्ट (अपने जेनुइनो 101 बोर्ड के अनुसार पोर्ट का चयन करें- यह "COM" (जेनुइनो 101) की तरह दिखना चाहिए

आप यह भी आज़मा सकते हैं:

- इसे मोबाइल या चलता-फिरता बनाने के लिए एक बैटरी पैक जोड़ें
- वास्तविक समय में चले गए क़दमों को दिखाने के लिए एक एलसीडी स्क्रीन जोड़ें।
- ब्लूटूथ का उपयोग कर पेडोमीटर को अपने फोन से कनेक्ट करें

अपने क़दमों पर नज़र रखें

अब सीरियल मॉनिटर टूल्स को खोलें>> उठाए गए कदमों की संख्या को देखने के लिए सीरियल मॉनिटर,इसमें थोड़ी देरी होगी

स्केच को अपलोड करना

अपलोड बटन पर क्लिक करके इस स्केच को बोर्ड पर अपलोड करें। यह पता करने के लिए कि स्केच अपलोड हो गया है आपको हरी लाइन के पूरे भरने का इंतज़ार करना होगा।

संक्षिप्त विवरण

स्क्रैच जैसी विजुअल प्रोग्रामिंग भाषाओं से आर्डुइनो * जैसी टेक्स्ट आधारित प्रोग्रामिंग भाषाओं में बदलाव करना कई लोगों के लिए चुनौतीपूर्ण हो सकता है! आर्डुइनो के लिए एक विजुअल प्रोग्राम बिल्डर आरडूब्लॉक मात्र एक ऐसा उपकरण हो सत्ता है जिससे आप यह अंतर पाट सकते हैं!

त्वरित जांच

- आपको एक आर्डुइनो बोर्ड जैसे कि जेनुइनो 101 कि ज़रूरत पड़ेगी
- आपको आर्डुइनो IDE को इनस्टॉल करना होगा

आरडूब्लॉक डाउनलोड करें

- इस लिंक पर जाकर आरडूब्लॉक के सबसे आधुनिक संस्करण को डाउनलोड करें
- आर्डुइनो को खोलें और फाइल्स प्रेफरेन्सेस पर क्लिक करें एवं ब्राउज पर क्लिक करके 'स्केचबुक लोकेशन' को खोलें

आरडूब्लॉक को इनस्टॉल करें

- 1. आर्डुइनो पर क्लिक करें
- टूल्स नाम का एक फोल्डर बनाएं (सभी लोअर केस या छोटे अक्षरों में होना चाहिए)
- टूल्स फोल्डर के अंदर एक ArduBlock टूल नाम का फोल्डर बनाएं (अक्षर संवेदनशील)
- टूल फोल्डर के अंदर टूल के नाम से एक नया फोल्डर बनाएं
- 5. जिस आरडूब्लॉक फाइल (Look at the link given in the main file) को आपने डाउनलोड किया है उसे आखिरी फोल्डर (टूल) में पेस्ट करें जिसे आपने बनाया है

आरडूब्लॉक को शुरू करना

- 1. आर्डुइनो को खोलें
- 2. टूल्स पर क्लिक करें >> आरडूब्लॉक
- अब आप अपने पहले स्केच को बनाने के लिए तैयार हैं। आइए बोर्ड को ब्लिंक करने के लिए तैयार करें!
- ''कंट्रोल'' पर क्लिक करें एवं अपने कोड के बेस के रूप में ''प्रोग्राम'' ब्लॉक को खींचें।
- ''कंट्रोल'' और ''पिंस'' भाग से खंडों का इस्तेमाल कर अपनी बाईं ओर की ब्लॉक संरचना को दोहराएं।

अपने कोड को अपलोड करना

 अपलोड पर क्लिक करें (इससे आर्डुइनो IDE को खुलना चाहिए)
 सुनिश्चित करें की आपका आर्डुइनो बोर्ड जुड़ा हुआ है एवं बोर्ड और पोर्ट दोनों ही ''टूल्स'' मेन्यू में चुने गए हैं

3. ''अपलोड'' पर क्लिक करें और आप ब्लिंक होने चाहिए!

